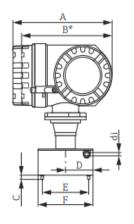
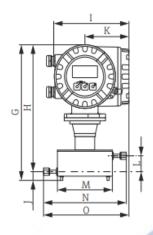


MEDICIÓN DE CAUDAL MÁSICO CORIOLIS MODELO CUBEMASS DCI





El caudalímetro coriolis CUBEMASS DCI de Endress Hauser, es un instrumento diseñado para aplicaciones como barnizados o acabados superficiales, hay que medir o añadir con precisión cantidades pequeñas de sustancias. Ya sea en aplicaciones de laboratorio o bancos de pruebas, en los sectores químico o petrolífero – el ligero y polifacético equipo Cubemass en diseño ultracompacto y con múltiples opciones de comunicación es el especialista en medición directa de masa y densidad a alta presión. Desde tan solo unas gotas hasta 1.000 kilogramos por hora – Cubemass mide líquidos de densidades diversas.

ESPECIFICACIONES:

GENERALES									
Sistema de medida	Transmisor coriolis Promass								
Principio	Medición de masa a través de oscilaciones de tubos internos								
Conductividad mínima	N/A								
Versiones	Compacta								
Señal de entrada	Ninguno								
Señal de salida	4-20mA HART(activo) Pulso/frecuencia/salida de interruptor (pasiva)								
Alimentación	DC 20 a 30 V								
Diámetros	Diámetro nominal: max. DN50 (2")								
Temperatura de proceso	-50+200°C								
Protección	IP66 / IP67								
Rango de presión	PN100 clase 600, 63K								
Error de medida	Flujomásico(líquido):±0.1% Flujovolumétrico(líquido):±0.1% Flujomásico(gas):±0.5% Densidad (líquida): ±0.0005 g/cm3								
Comunicación	HART, Modbus RS485, EtherNet/IP, PROFIBUS DP								
Aprobaciones Ex	ATEX, IECEx, cCSAus								
Protección electrónica	Estándar:IP66/67,caja tipo 4X Opción: IP69K								

DN	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	di
1	227	207	10	40	90	120	291.2	269.3	168	22	100	30	120	175	187.5	1.3
2																2
4																3.9
6																5.35